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Executive Summary 
The objective of this project was to design and build an autonomous search and rescue robot capable of 

following a line using computer vision to rescue a LEGO figure and transport it to one of the designated 

safety zones. 

The development process involved several key steps, beginning with the design of the robot’s locomotion 

system, followed by the integration of the Pixy vision module, and ultimately the full system integration. 

Over the past three months, our team worked on the design, manufacturing, and integration of the robot, 

adhering to the timeline provided by the MTE380 course. We evaluated various design iterations based on 

the constraints provided by the teaching team and the objectives defined by our team to be successful on 

the final competition day. The final design evolved through multiple iterations to create a fully operational 

robot. The finished design included a custom PCB chassis, a single-arm gripper, a Pixy vision module for 

computer vision, and a Teensy microcontroller for robot control. 

Throughout the development process, we encountered several challenges. These included errors in the 

initial PCB design, which required fly-wiring to make the robot operational, as well as difficulties with 

the gripper’s ability to hold the LEGO figure, necessitating several iterations. Additionally, the software 

required extensive tuning, particularly due to environmental factors such as varying lighting conditions, 

which affected the Pixy module’s ability to reliably detect different parts of the course. However, the 

team’s collaboration, leveraging each member’s expertise, enabled us to successfully troubleshoot and 

iterate on the final design. 

The final cost of the robot came to $278.15. The main costs included the Pixy module, motors, and the 

custom PCB. Most of the electronic components were bought off-the-shelf or manufactured externally, 

while many of the custom mechanical parts were 3D printed by team members, and the PCB was 

assembled in-house.  

The robot was tested on Game Day, March 28th, 2025. Game Day was a great success: the final robot 

weight came to 131g, with the fastest run time of 13 seconds. The robot completed 3 out of 3 successful 

runs, achieving a reliability factor of 0.75, and meeting all performance objectives of the competition. 
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1 Introduction and Background 

1.1 MTE 380 Course Description 

The MTE 380 course is a project-based course designed for third year Mechatronics engineering students 

at the University of Waterloo. Over the term, students are exposed to the design process of an open-ended 

problem requiring a mechatronics-based solution. This design process is then applied and documented as 

outlined in the course. This includes applying the design process from a needs analysis, problem 

formulation, preliminary designs, creating detailed designs, and then fully implementing this design, and 

then communicating the design through reports and presentations. Additionally, it develops skills such as 

working on a multi-discipline project and developing leadership and membership in team efforts. 

1.2 Autonomous Line Following Robot Challenge 

For the Winter 2025 term, the given problem was to design and build a device to execute a search and 

rescue mission to save a LEGO figure. The course is designed with sand, gravel, and empty traps if the 

robot goes off the course. The project cumulates to the final competition day where each group is given 

three attempts to complete the course. A successful completion run is where the device can traverse the 

course, pick up the LEGO figure, deliver it to a safe-zone, and then return to the start tile. There is a 

performance index used to determine bonus marks during the competition, used to calculate the device’s 

performance. It is a function of the device’s mass, reliability, and the run time as given below. 

𝑃𝐼 =
𝐹𝑓

𝑅𝑚𝑡2
(1) 

Where 𝐹𝑓 is a fudge factor used by the teaching team to make the result look nice, 𝑚 is mass in kg, 𝑡 is 

time and is a measure of the fastest time it takes to complete the course in seconds, and 𝑅 is the reliability 

factor which is based on the number of successful attempts out of 3. If all attempts are successful, the 

reliability is 0.75, then 0.9 for 2 successful attempts, and 1.0 for 1 successful attempt. 

2 Needs Analysis and Problem Formulation 

2.1 Needs Analysis and Problem Statement 

The rising number of search and rescue incidents in recent years has created an urgent need for more 

trained responders. In addition to increasing the number of search and rescue volunteers, there is also a 

critical need for faster response times. Delays in emergency situations can mean the difference between 

life and death, making it essential to enhance both personnel capacity and response efficiency.  

2.1.1 Needs Analysis 

By designing and building an autonomous search-and-rescue device for navigating an obstacle course to 

rescue a LEGO figure, this project aims to contribute to the development of reliable, low-cost 

autonomous systems for search and rescue operations. 
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2.1.2 Problem Definition 

Design an autonomous mobile robot capable of performing a search and rescue operation. The robot must 

navigate a designated obstacle course to locate and retrieve a LEGO figure from a danger zone, transport 

it to a safe zone, and return to the starting point without human intervention. 

2.2 Objectives, Constraints and Criteria 

In this section the various objectives, constraints and criteria developed both by the teaching team and 

group will be discussed.  

2.2.1 Objectives 

The objectives for the final robot design are outlined below in Table 1. 

Table 1: Objectives of Final Robot Design 

Objective Success Criteria 

Autonomous 

Navigation 

The robot must effectively follow the red tape line to and from the bullseye 

while minimizing oscillations, overshoot, and steady-state error. 

Use computer 

vision 

The robot must accurately identify the bullseye, LEGO figure and the green box 

for successful completion. 

Lightweight and 

liftable 
The robot needs to be under 200 grams. 

Minimize Time to 

Rescue 

The robot should accelerate at 5 meters per second squared and reach a velocity 

greater than 1 meter per second. Complete the full course in under 30 seconds. 

2.2.2 Constraints 

The project has various constraints restricting the design of the robot as outlined by the teaching team. 

These constraints are listed below. 

1. The device is not permitted to leave the boundaries of the search and rescue site. 

2. The device is not permitted to climb over the walls. 

3. The device must adhere to the designated path; no shortcuts allowed.  

4. The maximum size of the robot is 10”x10”x10”. 

5. The total cost of the robot must be under $300. 

6. Flying devices, projectiles, LiDAR, and devices that separate into multiple pieces are not 

permitted. 

7. The course cannot be destroyed.  

2.2.3 Criteria 

The criteria our group focused on when developing possible designs and selecting the final design are 

outlined in Table 2. 

Table 2: Criterion for Selection of Final Robot Design 

Criteria Description 

Integration 
Having certain features on the robot can have negative effects on other components 

or systems. Designs minimizing this potential negative impact were prioritized. 
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Weight 

The weight of the robot is critical for the performance index. It is a value that is 

fixed prior to game day but has a big range. Therefore, minimizing weight is 

extremely important. 

Cost 
The actual cost of the robot was important to minimize since marks would be 

deducted on robot designs that exceeded the $300 budget. 

Complexity 

The complexity of the design impacts the overall time commitment of the team. 

Minimizing the level of difficulty to implement the design while ensuring a well-

designed robot was considered for this criterion. 

Reliability 
The reliability of the robot is extremely important. It is a criterion that is critical for 

the performance index, as the course needs to be completed at least  

2.3 Overview of Final Design 

This section will outline the components of our final robot design including the mechanical components, 

electrical system, and software architecture. Figure 1 shows the final completed robot design with 

numbers indicating important components. These components are listed in Table 3. 

 

Figure 1: Full robot with numbered components 

Table 3: Component Legend 

Number Component 

1 Servo Motor 

2 Arm 

3 Backstop + Roller Ball 

4 PCB 

5 DC Motor 

6 Wheel 

7 Teensy 

8 Bluetooth Module 

9 Battery 

10 Pixy Camera 
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2.3.1 Mechanical System Design 

The mechanical system was comprised of four main components. The motors, gripper, wheels, and the 

suction system. 

2.3.1.1 Motors 

The motors are two 6V Pololu Micro metal gear motors with a 10:1 gear ratio. These motors had a 

maximum speed of 3100rpm which translates to 324.6 radians per second. This gives us a maximum 

possible velocity of 7 meters per second. They are also capable of providing 0.02157463 Newton meters 

of torque, allowing us to achieve an acceleration far greater than our intended 5 meters per second 

squared specification. 

2.3.1.2 Gripping Mechanism 

The gripping mechanism was designed to scoop the minifigure into a cut out space in our chassis. The 

assembly was made of a servo motor for actuation, a 3D printed arm, and a backstop to provide a locating 

face. The servo was a DSM44 servo with a max range of 145 degrees. The arm was a curved piece of 

PLA with foam wrapped around the center to increase the area that gripped the figure, as well as 

cushioning for vibrations. Finally, the backstop was also 3D printed. The arm was positioned to contact 

the LEGO figure on the upper chest area, since the chest was the largest flat surface and high enough to 

effectively use the backstop. The arm also was required to be above the legs of the minifigure while in the 

seated position so the arm could act like a seatbelt and reduce the chance of the minifigure being released. 

The backstop was designed to lift the minifigure off the ground slightly to avoid getting caught on large 

bumps on the track. This was accomplished by tilting the backstop so when the figure came in contact 

with it, the arm would push the top of the figure up the slope. 

2.3.1.3 Fan Design 

To improve the robot’s performance, particularly its cornering speed, a suction system was incorporated 

into the design. Based on early calculations, it was clear that slipping would become a limiting factor for 

the robot’s speed and ultimately for its performance index.  

This limitation arises from the fact that the maximum cornering speed is governed by the balance of 

frictional force and the required centripetal force for turning. Starting from Newton’s Second Law applied 

to circular motion, the frictional force, Ff must equal the centripetal force FC leading to equation 2: 

𝐹𝐶 = 𝐹𝑓 = 𝜇𝐹𝑁 = 𝑚𝑎 = 𝑚 (
𝑣2

𝑟
) (2) 

Without additional forces, the normal force, FN, is just mass times gravity, 𝑚𝑔, where 𝑚 is the mass of 

the robot and 𝑔 is the gravitational acceleration. Here, 𝑣 is the velocity of the robot and 𝑟 is the radius of 

the corners on the course. Then, solving for maximum velocity results in equation 3. 

𝑣𝑚𝑎𝑥 = √𝜇𝑟𝑔 (3) 

Where µ is the tire to ground coefficient of friction and 𝑟 is the turn radius. Since µ, 𝑟, and 𝑔 are fixed 

properties, the maximum cornering speed is capped at: 

𝑣𝑚𝑎𝑥 = √(1.2)(0.15[𝑚]) (9.81 [
𝑚

𝑠2]) 
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𝑣𝑚𝑎𝑥 = 1.32 [
𝑚

𝑠
] 

Based on initial calculations of driving speed requirements and motor capabilities, it was clear that the 

robot was capable of much more than 1.32 m/s meaning this velocity was a clear limitation to the overall 

performance of the robot. 

However, by introducing an additional downward force through suction, the normal force becomes, as 

described by equation 4: 

𝐹𝑁 = 𝑚𝑔 + 𝐹𝑑  (4) 

Where Fd is the downforce created by the suction system. This increases the effective frictional force and 

raises the maximum velocity according to equation 5: 

𝑣𝑚𝑎𝑥 = √
𝜇𝑟(𝑚𝑔 + 𝐹𝑑)

𝑚
 (5) 

Therefore, by adding suction, the robot can corner at significantly higher speeds without increasing its 

mass.  

Research into similar small-scale robotics competitions, such as Micromouse, revealed that suction 

systems are commonly used to overcome this challenge with some robots achieving downforce as high as 

5x their mass allowing for cornering velocities of up to 4 m/s. The suction system creates downforce, 

allowing the robot to achieve higher cornering speeds without the drawback of increasing mass, which is 

advantageous considering the performance index favors reduced mass. The design consisted of two main 

subcomponents: an impeller and a skirt. The impeller is responsible for creating a pressure differential 

across the chassis while the skirt is responsible for sealing against the ground to generate the required 

suction effect needed for increased traction. 

Given the tight project timeline, the complexity of accurately simulating airflow, and uncertainties about 

other component selection and design, the suction system design was driven primarily by hands on 

experimentation rather than computational methods such as CFD. Experimentation was prioritized over 

calculation to save time, rapidly iterate on designs, and adapt quickly based on observed results. This 

approach allowed the suction system to be developed within the constraints of the project timeline. 

A powerful 8520 coreless drone motor was selected for preliminary testing for driving the impeller since 

it is commonly used in the hobby drone sector. 

2.3.1.4 Wheel Design  

To meet the design requirements, custom tires were cast in silicone and paired with 3D printed PLA rims. 

Custom making the tires allowed for customizability of material and in turn the coefficient of friction, and 

the size. Custom tires also reduced costs compared to off the shelf options since it was assumed iterations 

would be required.  

The rims were designed with minimal spokes to reduce weight while maintaining strength. During 

manufacturing, it was found that the silicone did not naturally bond to the PLA, so super glue was used to 

attach the tires to the rims.  
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The rim was chosen to be 16mm in diameter to account for a 2mm thick silicone tire which was enough to 

be durable yet lightweight. 

2.3.2 Electrical System Design 

The electrical system had two primary focuses: power distribution and enabling communication between 

the various components. An overview of power distribution and communication as they relate to critical 

components are shown in Figure 2. 

.  

 
Figure 2: High Level Electrical System Power Distribution and System Communication 

2.3.2.1 Power Distribution 

The robot is powered by two 3.7V, 220mAh LiPo batteries in a 2S configuration. This allows the robot to 

receive an equivalent 7.4V, 220mAh power source. The battery voltage is used to power the driving 

motors and provide an input to the fixed 5V buck. This buck then provides a regulated 5V output to 

power critical components such as the Pixy, Teensy, Bluetooth module, motor drivers, gripper motor, and 

fan motor. For this reason, the selected buck can provide up to 5A on the 5V rail. The Teensy additionally 

has an onboard 3.3V voltage regulation system that is used to power the button circuit. This was done 

since the pins on the Teensy cannot have a voltage above 3.3V applied, so the 3.3V ensures no damage to 

the Teensy. 

2.3.2.2 System Communication 

The Teensy is the main control board of the system. It communicates with the Pixy through SPI and 

receives feedback that allows it to drive various motors on the system based on the robot's surroundings. 

The Bluetooth module communicates with the Teensy through UART, allowing the serial output of the 

Teensy to be viewed without physically connecting to the Teensy. The driving motors are driven by motor 

drivers mounted on the board.  
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2.3.3 Software System Architecture 

2.3.3.1 Teensy 

The Teensy microcontroller was selected for its ability to run the main control and state arbitration loop. 

Given its small form factor, reasonable price, and adequate computation ability, the Teensy was a superior 

choice over other microcontrollers considered such as the Arduino Nano. The main software logic 

running on the Teensy included the PD controller, motor, and encoder output, as well as a state arbitrator 

which was used to switch the state of the robot’s software program. Table 4 provides a brief description of 

each state within the main control loop’s switch-case logic running on the Teensy.  

Table 4: Description of all states and functionality in the main control loop. 

State Description 

LINE_FOLLOW_PICKUP 

- Follow the red line. 

- Stop if the bullseye has been detected within a specific 

threshold. 

LINE_FOLLOW_DROPOFF 

- Follow the red line. 

- Stop when the green box has been detected within a specific 

threshold.  

LEGOMAN_ALIGN 

- Identify the LEGO figure in the frame. 

- Center the robot so that the LEGO figure is in ideal location 

for gripping based on coordinates in the frame. 

- If the LEGO figure is not detected, pulse the robot forward 

until the LEGO figure enters the frame. 

PICKUP_LEGOMAN 

- Close the gripper around the LEGO man. 

- Turn 180 degrees with the LEGO man. 

- Look for the red line to follow.  

- If the red line is not in view, turn a small amount until the 

line comes in view. 

UNLOAD_LEGOMAN 

- Turn to face the green box straight-on. 

- Move forward and open the gripper to release the LEGO 

man. 

- Reverse the robot and turn back to re-find the red line. 

GO_HOME 
- Follow the red line. 

- Stop when there is no longer a red line detected.  

2.3.3.2 Pixy 

The Pixy camera module was chosen for its built-in line tracking and object detection capabilities, along 

with its user-friendly and well-documented API, which made integration into the system straightforward. 

By combining a camera and a system-on-chip (SoC) in a single package, the Pixy significantly simplified 

the alternative approach of pairing a standalone camera, such as a web camera, with a microcomputer like 

a Raspberry Pi. Its largely open-source API also provided extensive documentation, making it easy to 

interface the camera’s computer vision features with control algorithms on a microcontroller. 

The Pixy camera’s color detection algorithms were used to detect the red line, as well as all other objects 

of importance, such as the bullseye, LEGO figure and the green box. Since the Pixy API provides crucial 

data such as block size and the X and Y coordinates of detected objects within the frame, this output could 

be directly integrated into the proportional-derivative (PD) controller to dynamically adjust the robot’s 

steering in real time.  
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The Pixy camera performs object detection using a color filtering algorithm that can be trained to 

recognize specific objects based on their color properties, known as ‘signatures’. Using the PixyMon 

software (provided with the Pixy camera), the camera could be programmed to detect up to seven 

different color signatures.  

To configure a signature, the Pixy camera is first connected to a compatible external laptop running the 

PixyMon software. A color within the camera’s frame is then selected and assigned to a signature. The 

Pixy records the hue and saturation range of that color for future recognition. 

As the Pixy captures images at a high frame rate (up to 60 frames per second) it checks each pixel to 

determine whether it matches any of the saved hue/saturation ranges. It then applies the Color Connected 

Components algorithm to identify groups of adjacent pixels that share the same color signature. These 

groups are treated as individual blocks. The algorithm filters out noise and false detections, ensuring it 

will only return well-defined blobs.  

PixyMon also offers a variety of adjustable parameters, allowing users to fine-tune the inclusiveness of 

the CCC algorithm, set limits on how many blocks are returned, and compensate for different lighting 

conditions to improve detection reliability. For Game Day, the Pixy camera was specifically configured to 

return only one block per color signature. This setting was chosen to minimize the risk of the robot 

selecting an incorrect block, ensuring that only the most prominent for each signature was used during 

operation.   

2.4 Mapping the Design to the Objectives and Constraints 

A summary on how the constraints were met in the design are shown in Table 5. 

Table 5: How Criteria was met in the Design 

Constraint Solution 

Maximum size of robot is 10”x10”x10” The final robot dimensions were 3.3”x4.5”x3.7”, 

well within the limit. 

Total cost of robot must be under $300 The total cost of the robot came to $278.15 

LiDAR cannot be used The robot relied solely on input from the Pixy 

camera module. 

The course cannot be destroyed The robot was designed to navigate the course 

without causing any damage. 

The device is not permitted to leave the 

boundaries of the search and rescue site 

The robot was designed to complete the course 

within the boundaries. 

The device is not permitted to climb over the 

walls 

The robot was designed to not climb over the 

walls and solely move using wheels. 

The device must adhere to the designated path; 

no shortcuts allowed 

The robot was designed to follow the designated 

path without any shortcuts.  

Flying devices, projectiles, LiDAR, and devices 

that separate into multiple pieces are not 

permitted. 

No flying devices, projectiles, LiDAR, and 

devices that separate into multiple pieces were 

used. 

The project objectives were also fully met, as summarized in Table 6. 

Table 6: How Objectives were met in the Design 

Objective Criteria Met 
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Autonomous Navigation The robot demonstrated fully autonomous behavior, including 

line following, Lego figure identification, gripping, and precise 

drop off. 

Use computer vision Computer vision algorithms powered the robot’s autonomous 

capabilities, enabling accurate detection and decision making. 

Lightweight and liftable Weighing only 131 grams, the robot was highly portable and 

easy to handle. 

Minimize Time to Rescue The robot’s motors were selected for rapid response. Its speed 

was limited only by its ability to track the line accurately, 

making it especially fast on straight sections. 

2.5 Project Schedule 

The Gantt chart used to track each team’s progress throughout the term is show in Figure 3. The projected 

timelines are shown in purple, with a red outline showing the actual timeline that was followed.  

 

Figure 3: Gantt Chart with Team Progress and Milestones 

Each milestone from the construction check onwards is identified on the Gantt chart as these milestones 

required substantial preparation.  

2.6 Project Budget 

Table 5 outlines the all components included in the assembly of the robot are included. It should be noted 

that although a Bluetooth module was integrated into the PCB during development for debugging 

purposes, it was removed before racing and therefore is not included in the budget of our final system. 

Table 5: Project budget for the purchased bill of materials 

Item Vendor Unit Cost ($) Quantity Total Cost ($) 

Driving Motors Pololu 37.12 2 74.24 

Driving Motor Cables Pololu 3.13 2 6.26 

Gripping Motor MESS 0 1 0 

Pixy 2 DigiKey 105 1 105 

Teensy DigiKey 33 1 33 

Battery Amazon 4.30 2 8.60 

PCB JLCPCB 7.34 1 7.34 
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PCB Parts DigiKey 28.96 1 28.96 

Foam Amazon 0.22 1 0.22 

Roller Ball Pololu 3.66 1 3.66 

Tires CUSTOM 0.75 2 1.50 

Misc. 3D Prints CUSTOM 1 3 3 

TOTAL        278.15 

3 Construction and Testing 

3.1 Final Built Model 

Figure 4 shows the final Game Day assembly with the second iteration of the PCB and the Bluetooth 

module, which were improvements from Design Check 2.  

    

Figure 4: Final built model on game day. 

To improve the organization of the wiring, the jumper cables connecting to the Pixy were used in their 

original ribbon configuration and the motor connector cables were twisted. Keeping the wires bundled 

together allowed for cleaner routing, minimized potential for disconnection or miswiring, and improved 

the overall tidiness of the system.  

3.2 Design Modifications 

3.2.1 Mechanical System Modifications 

3.2.1.1 Arm Iterations 

The robot gripper arm went through many iterations. The initial iteration featured a straight arm with a 

small hook on the end to prevent the minifigure from slipping out. This performed well when the LEGO 

figure was positioned but struggled to acquire the target in non-ideal cases. It was then decided to increase 
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the length of the arm to create a larger possible area. After testing again, it was seen that the design did 

not properly corral the LEGO figure into the slot, so the arm was curved to force the LEGO figure into 

the cutout. Finally, it was observed that the LEGO figure was occasionally gripped too loosely, so foam 

was added to the arm to fill any space and increase the gripping area. 

3.2.1.2 Backstop Iterations 

The backstop also experienced multiple iterations throughout the project. Initially the backstop was a 

small flat piece that did not protrude from the chassis at all. This did not effectively locate the LEGO 

figure. The backstop was then curved to match the shape of the chassis cutout. This provided a much 

larger locating face and increased the reliability of the gripping process. Finally, after observing the 

LEGO figure getting caught on the track, the backstop was tilted backwards to provide a small amount of 

LEGO figure off the ground. 

3.2.1.3 Suction System – Impeller Iterations 

Impeller testing was conducted to determine the optimal impeller design for generating downward suction 

against the course once it was realized that the robot was able to reach a high enough speed for the 

downforce to matter. Figure 5 illustrates the mock 3D printed robot chassis that was used to hold the 

different impellers while timing how long it took the chassis to slide down a wooden tile that matched the 

course surface. The impeller was powered off an external power supply with the voltage set to 5V and the 

current limited to 500mA. Although the motor could draw up to 1.7A, this was not realistic for the robot’s 

power system, so the current was limited during testing. 

 

Figure 5: 3D printed mock chassis. 

Figure 6 illustrates the test setup which involved a 1’ piece of plywood inclined to 25 degrees. 
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Figure 6: Impeller test setup. 

Testing varies impeller diameter, height, blade pitch, blade count, blade curvature angle, and impeller 

style, comparing compression design against full radial designs. Figure 7 illustrates approximately 20% of 

the impeller designs that were tested, the remaining ones were discarded or lost during the iterative design 

process.  

 

Figure 7: 20% of tested impellers. 

Table 6 summarizes the best performer for each style of impeller, showing that the radial design is 

approximately 2.6x more effective than the compression style.  

Table 6: Impeller performance summary 

Impeller Setup Average time down ramp for 5 runs [s] 

Control – motor off 0.844 

5 blade, 60 degree curvature, 25mm pitch, 30mm 

diameter, 15mm height, compression  

21.13 

5 blade, 60 degree curvature, 30mm diameter, 

15mm height, radial 

55.12 

Blade count was identified as the most significant factor influencing performance, with 4 or 5 blades 

yielding optimal results. Increasing the blade count from 5 to 7, or decreasing from 5 to 2, both resulted in 

approximately a 50% reduction in performance, approximately 21s to 9s for both cases meaning 7 blades 

performed equally as good as 2. 
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Figure 8 illustrates the best performing impeller was a full radial style with 5 blades, 60 degrees of 

convex curvature, 25mm blade pitch, 30mm diameter, and 15mm height, with a 13mm hole in the PCB. 

 

Figure 8: Optimal impeller design. 

Further improvements could be made with higher quality manufacturing or CFD optimization, but instead 

physical testing was prioritized due to time constraints. All impellers were FDM printed using a Prusa 

MK4S with 0.2mm layer height. It must be noted that with a smoother impeller, results should improve. 

It should also be noted that the final design was restricted to a 28mm maximum diameter tapering down 

to 22mm at the base, since the 2nd PCB revision was dimensioned for a compression style fan rather than 

a radial style. This modification was required, which affected performance negatively. Figure 9 illustrates 

the final impeller that was prepared for use. 

 

Figure 9: Adjusted optimal impeller design. 

3.2.1.4 Suction System – Skirt Iterations 

Skirt testing was conducted to determine which material, and design provided the best suction effect 

against the course surface using a similar technique as described for impeller testing. Dynamic skirts were 

created using tape, thin PLA 3D printed skirts, and a rail system. Foam and rigid 3D prints were also 

tested. Figure 10 illustrate all the skirt designs that were evaluated. 
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Figure 10: Example skirt designs. 

The same test setup was used for the skirt as the impellers except 2.5mm spacers were added to simulate 

the distance off the ground that the wheels would provide, and the same 7 bladed impeller was used for all 

skirts. Table 7 summarizes the differences between skirt performances. 

Table 7: Skirt performance summary 

Skirt Description Average time down ramp for 5 runs [s] 

Control, impeller motor on but no skirt 0.98 

Tape and thick foam 4.52 

Felt 2.23 

Felt, thin foam, thin plastic 12.8 

3D printed rail system 51.3 

Figure 11 illustrates the most effective skirt design. The design used the same tape concept as the skirt 

shown on the far right of Figure 10. The design combined 3D printed side rails with a thin 3D printed 

skirt that lightly contacted the ground. To prevent the skirt from catching on surface ridges, a ramp feature 

was added at the front of the thin skirt. This design allowed for movement in the driving direction while 

using tape to seal and the rail walls to constrain and partially seal in the non-driving direction.  

 

Figure 11: Optimal skirt design. 

3.2.1.5 Custom Wheel Iteration 

During the initial wheel design, ribs were incorporated into the 3D printed PLA rims with the intention 

that the molded silicone would bond mechanically to the outer shell and the ribs would help secure the 

material in place during the torsional loading. However, during manufacturing it was observed that 

silicone did not adhere to the PLA. As a result, the silicone tires had to be super glued to the rims.  

This approach introduced a new issue. The preens of the ribs caused the silicone to sit unevenly around 

the rim, leading to the wheels not being perfectly circular. This non-uniformity resulted in highly 

inconsistent driving behavior when the robot was commanded to drive straight, without any controller 
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implemented. This natural instability made PD controller tuning more difficult, especially at higher 

speeds. 

To address this issue, the rims were remade with smooth, perfectly circular surfaces instead of a ribbed 

structure. This change worked extremely well. The wheels molded cleanly and produced a more 

consistent result after gluing. The robot was naturally driving more straight which made PD tuning much 

easier. Figure 12 illustrates the old and new rim design. 

 

Figure 12: Rim iteration from ribbed (left) to smooth (right) 

 

The rim geometry was not further optimized, such as reducing spokes or thinning sections, since the 

performance was adequate and given the timeline, there were other challenges to solve first. It should be 

noted that the manufacturing process remained the same for the silicone tire. 

3.2.2 Electrical System Modifications 

During the debugging and bring-up phase of the board, several design issues were identified within the 

electrical system that required modifications. Figure 13 shows the first iteration of the PCB. 

 

Figure 13: Rewiring of the first PCB design iteration. 

The first issue involved the direction of the driving motor connectors on the PCB. During the design 

phase, the pins were incorrectly labeled, leading to the pins being attached in reverse. This mistake 
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resulted in the need to cut and re-solder all the wires from the motor to the PCB in the correct 

configuration.  

The second issue that emerged was the limited output current of the 5V buck converter, which could only 

supply 2A. The major components powered by the 5V rail – including the Teensy, Pixy, Bluetooth 

module, gripper motor, and fan motor – were drawing more current than initially calculated. The power 

requirements of the gripper and fan motors were underestimated, and the Bluetooth module was not 

included in the original design since it was a later request by the software team. After recalculating the 

power demands, it was clear that a new buck converter with a higher current rating would be required. 

This change was implemented in the revised iteration of the PCB. 

Another oversight involved powering the motor encoders with 5V instead of 3.3V. While the encoders can 

technically operate on 5V, the Teensy is not 5V-tolerant, so the encoder powering wires had to be fly 

wired to a 3.3V rail off the Teensy to ensure compatibility. 

To improve system diagnostics and prevent further issues, a battery monitoring circuit was also added in 

the second revision. This circuit used a voltage divider to scale down the battery voltage into the ADC 

range of the Teensy, allowing a software algorithm to estimate battery levels in real-time. Previously, 

battery-related issues could go unnoticed and took using a multimeter to diagnose. This new monitoring 

feature ensures that low battery conditions can be detected and addressed during operation. A dedicated 

function was implemented in the software to constantly monitor the battery level. When the voltage 

dropped below a defined critical threshold, the system triggered a visual warning by flashing an LED on 

the Pixy camera and initiated a full system shutdown to prevent damage to the hardware or unstable 

operation.  

3.2.3 Software System Modifications 

During the initial design phase of the custom PCB, several factors were considered to ensure the board 

would meet all software requirements, with extra care taken to ensure the correct components were 

selected. However, a significant oversight occurred in this initial design – it failed to consider a 

debugging tool.  

This oversight likely occurred due to the assumption that debugging individual sub-functions could be 

completed prior to their integration with the main software algorithm. It was also presumed that, once the 

robot was operational on the course, serial output would no longer be necessary. However, during the 

tuning of the line following algorithm and development of functions involving object detection, it was 

evident that a constant stream of serial output would accelerate the development process.  

Once the second PCB arrived, compatible with an HC-05 Bluetooth module, it was simple to connect an 

external device to the Bluetooth module and stream the serial output of print statements to the terminal. 

Specifically, it greatly simplified the tuning process for object detection thresholds – particularly in 

defining the minimum object size required in the frame for it to be considered a valid detection.  

In the original software system plans, and early development process, the Pixy 2.1 camera built-in line 

tracking algorithm was used to perform line following. This worked extremely well in early testing, 

where a white tape line was stuck on the dark linoleum floor in the shape of a box with rounded corners. 
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With the combination of white tape and dark floor, and the consistent nature of the taped box, the robot 

could smoothly follow the tape and not veer off course or extensively oscillate.  

Once testing started on the actual course though, the inconsistencies in the course became significantly 

problematic for the Pixy’s line tracking algorithm. This was likely due to the slight gaps between wooden 

tiles, where the tape would not smoothly follow from one tile to the next. In addition, red tape against the 

medium wood grain was not a significant enough contrast for the Pixy’s line tracking algorithm to always 

select the red tape as the main vector to follow, and it would sometimes select other vectors from random 

edges on the course. When the main vector was ‘lost’ or selected incorrectly, the robot’s behaviour would 

become unpredictable, often either overshooting a corner, not turning at all, or following the line with 

constant small oscillations which could not be reduced through tuning the proportional-derivative (PD) 

controller. 

To mitigate this issue, several adjustments were taken, the most significant being switching from using 

the Pixy line tracking algorithm to the hue-based colour detection algorithm, called Colour Connected 

Components (CCC) mode in the Pixy documentation. As opposed to detecting lines via edges and shapes, 

based on canny edge detection, the colour detection algorithm can detect the red line by learning a 

specific colour and identifying the red line based on hue and saturation filtering. This proved to be much 

more effective under a wider range of lighting conditions, surfaces, and inconsistencies in the tiles. 

When switching to the Color Connected Components (CCC) mode, the code was configured to query the 

x-position of the center of the detected red block, as opposed to the x-position at either the head or the tail 

of the vector in line tracking mode. This x-position was then compared to the known center of the 

camera’s frame to calculate an error value. This error served as the input to the PD controller, which 

adjusted the robot’s steering to maintain alignment with the center of the red block.  

An additional advantage of using red line tracking through the Pixy’s Color Connected Components 

(CCC) algorithm was that it allowed the software to operate entirely within CCC mode. This eliminated a 

need to switch between the Pixy’s line tracking and colour detection modes during runtime, ultimately 

avoiding any potential issues related to time latency and frame-to-frame data inconsistencies. If the Pixy’s 

line tracking API had been used instead, it would have been challenging to programmatically switch to 

color detection mode without resorting to hard-coded workarounds. This is due to a key limitation of the 

Pixy camera; it cannot run both the line tracking and color detection algorithms in parallel. By using CCC 

mode to detect the red line, bullseye, LEGO figure and green box, the software implementation was 

simpler and more effective.  

Another significant change to the overall software system involved a major refactor of the codebase to 

adopt an object-oriented programming (OOP) paradigm and improve upon organization in the main 

control loop. Further details regarding the changes in programming style and their impact on system 

design can be found in Section 3.5.1. 
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3.3 Testing Plan and Design Verification Results 

3.3.1 Mechanical System Test Plan 

3.3.1.1 Suction System  

Before any on-course testing, the fan motor was tested with the selected batteries. It was found that the 

motor drew too much power, rapidly depleting the battery capacity preventing reliable operation of other 

systems. Although the fan and skirt showed very promising results individually as described in Section  

3.2.1.3 and 3.2.1.4, the battery limitations made it impractical to reliably operate the robot while the 

suction system was active. Therefore, the suction system was abandoned to preserve battery life for 

critical functions.  

The test and verification plan for the suction system was to measure the maximum stable cornering speed 

with and without the suction system active. Given that the suction system added approximately 10g to the 

robot’s overall mass, the robot would need to corner approximately 5% faster with the suction system on 

to justify the added mass according to the performance index. However, this test was never conducted due 

to the battery limitations, budget constraints, and timeline pressures. 

Although the fan system was abandoned before verification could be completed, it should be noted that 

the systems performed very well individually. At this point, the team decided to prioritize more essential 

performance index improvements including reliable LEGO figure acquisition and green box detection. 

3.3.1.2 Gripper  

The testing of the gripper system was done through observational experiments. The testing was split into 

two parts, the grabbing, and then the holding process. First, the grabbing was tested by placing the LEGO 

figure in a variety of places in front of the robot and observing how the figure was clamped when the arm 

closed. Based on the observations, the shape of the arm was changed to improve the acquisition of the 

figure. Next, the holding was tested by placing the figure in the ideal spot, closing the arm, and driving 

the robot over simulated bumps. The video was taken of these tests to review and observe where and how 

the LEGO figure was shaking or being released. These tests led to the formation of the different 

backstops. To pass this test, the robot had to grip the figure successfully ten times in a row from the same 

spot, and then not release the figure when driving over the bumps. 

3.3.2 Electrical System Testing 

The electrical system test plan focused on verifying that the PCB operated as expected. This process 

began with inspecting the PCB assembly and carefully bringing it up to ensure the proper functionality of 

all components. Initially, the board was powered on with a limited current to minimize risk, and the 

current was gradually increased once it was confirmed that the board was correctly assembled and not 

drawing excess power. The following electrical testing was conducted in parallel with software 

development. As various Teensy firmware was executed, the functionality of physical components such as 

motors was tested to ensure the electrical system was properly configured. 

3.3.3 Software System Testing 

The software system was developed and tested in stages, beginning with low-level hardware validation 

and progressing toward full integration of high-level behavior. This staged testing approach ensured that 
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individual components were functioning correctly before introducing complexity, helping to isolate issues 

early and reduce debugging overhead later in the process. Testing began with low-level component 

verification, progressed through subsystem functionality, and concluded with full-system state machine 

validation.  

3.3.3.1 Low-Level Testing 

Before implementing any behavioral logic such as line following or turning, each basic hardware 

component was validated through simple software tests. Each motor was connected to the microcontroller 

and driven independently at incrementally increasing PWM values in both forward and reverse directions. 

This test was performed with the chassis elevated, before the wheels were installed, to eliminate ground 

friction as a factor. It was confirmed that both motors responded appropriately to control signals and were 

able to spin freely in both directions. This test helped determine the deadband threshold of each motor, 

and also helped discover that this deadband varied depending on the state of charge of the batteries.  

Following motor tests, the encoders were examined. Each encoder was manually rotated, and serial 

monitor output was used to verify pulse counts. During this stage, one encoder failed to return any values, 

leading to the discovery of a wiring issue at the signal connection point. This issue was corrected, 

allowing accurate speed feedback from both motors. Identifying and resolving this before more complex 

control logic was added saved considerable troubleshooting time later. 

Thirdly, testing was conducted to characterize the motor speeds. The step response of each motor was 

tested using the encoders. We found that, despite using the same PWM inputs, the motors did not rotate at 

identical speeds (one was naturally less powerful). This was critical in understanding the limitations of 

our drivetrain and informed our later calibration strategies. 

With encoders functioning, additional tests were conducted to characterize the motor speeds and 

symmetry. The step response of each motor was tested using the encoders. By applying identical PWM 

inputs and logging encoder feedback over a fixed time interval, it was determined that the motors 

operated at noticeably different speeds. This discrepancy was attributed to inherent hardware variation. 

Compensation was attempted via PWM offsetting, where the slower motor was given a higher duty cycle 

to match the speed of the faster one.  

Despite offsetting PWM values of the motors, straight-line driving tests on the ground revealed that the 

robot still veered consistently to one side. Further investigation determined that the source of the 

deviation was mechanical, not electrical. The rubber tire on one wheel, which are manufactured in-house 

using a custom mold, was discovered to be uneven and sloped. This created a lateral force imbalance, 

causing persistent drift regardless of software compensation. The defective wheel was replaced, after 

which the robot demonstrated consistent straight-line movement under identical motor control conditions. 

3.3.3.2 Mid-Level Testing 

Upon successful completion of low-level hardware testing, attention was directed toward subsystem-level 

software testing. A significant portion of this testing involved configuring and refining the Pixy vision 

system, which served as the primary sensor for navigation and task execution. The camera was 

programmed using the PixyMon software to track four distinct colour signatures: red for line following, 

blue for the bullseye rescue zone, orange for the LEGO figure, and green for the safe drop-off zone. 
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To reduce false positives and enhance detection reliability, pixel thresholding and region filtering were 

applied. These filters constrained detection based on the size and position of the coloured blocks within 

the camera’s field of view. For example, blue detection (used to identify the bullseye) was initially limited 

to the lower-central portion of the frame. This tight region constraint ensured that the robot only triggered 

the pick-up routine when the bullseye was positioned directly beneath the camera. This improved spatial 

accuracy and reduced false detections from nearby objects like the rocky terrain or shadows. 

However, during extended field testing, it became clear that detection performance was strongly 

influenced by the robot’s speed. At lower speeds, the original narrow region of interest was effective. The 

robot was able to approach the bullseye slowly and stop precisely when the blue block entered the 

designated lower-third of the frame. In contrast, at higher speeds, this same configuration caused 

performance degradation. The robot often overran the bullseye before detection occurred because the blue 

signature did not enter the narrow detection region until it was too late to react. To address this, the 

vertical detection bounds for the blue signature were expanded. Specifically, at high-speeds, detection was 

allowed as soon as the blue block appeared in the middle third of the frame. This increased the reaction 

time available to the robot, enabling earlier braking and smoother alignment over the target. While this 

adjustment slightly reduced positional precision, it significantly improved task success at higher velocities 

by compensating for momentum and potential lateral drift. This observation highlighted the importance of 

co-tuning sensing parameters alongside dynamic system behavior. 

In addition to spatial filtering, lighting conditions were identified as another major factor affecting 

detection accuracy. Early testing on the track revealed that the robot’s behaviour varied significantly 

depending on the time of day. This inconsistency was attributed to the large windows in the room, which 

allowed natural light to alter the brightness and exposure levels captured by the Pixy camera. As a result, 

the colour detection thresholds configured in PixyMon (particularly for the red, blue, and green 

signatures) would perform differently depending on whether the system was operated during daylight 

hours or under artificial lighting at night. 

To address this inconsistency, an attempt was made to introduce controlled lighting conditions using the 

built-in bright white LEDs on the Pixy camera module. The hypothesis was that by using the LED lights, 

a more consistent lighting environment could be maintained regardless of ambient daylight conditions. 

However, testing with the LEDs revealed several drawbacks. Due to the proximity of the camera to the 

ground, the intense light output caused the field of view to become overexposed, washing out colour 

contrasts and degrading the effectiveness of colour block recognition. Additionally, the surface of the 

LEGO figure was highly reflective, which led to unpredictable reflections and further interfered with 

accurate detection. 

Given these issues, the use of the LED lights was abandoned. Instead, a dual-configuration approach was 

adopted within PixyMon. Two distinct sets of exposure and colour threshold settings were created: one 

optimized for daytime use when natural light was present, and another tailored for nighttime or low-light 

conditions relying solely on overhead lighting. This strategy allowed the robot to maintain reliable 

performance across varying environmental conditions by manually loading the appropriate configuration 

prior to operation. 
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3.3.3.3 High-Level Testing 

Higher-level software functions were developed modularly and tested independently before integration. 

High-level testing focused on confirming that the robot could execute the complete search and rescue 

sequence reliably: following the red line from the start position, detecting, and retrieving the LEGO figure 

from the bullseye, identifying a green safe zone for drop-off, and returning to the starting location. These 

tasks relied not only on the correct operation of each subsystem, but also on the accurate coordination and 

timing between them. 

The PID controller subsystem, while validated earlier in controlled environments, required additional 

tuning during full system testing to ensure smooth performance when integrated into the full search and 

rescue routine. For example, the PID controller for line-following had been tested prior to assembling the 

gripper arm on the servo motor and without the LEGO figure gripped in front of it. Therefore, further 

testing was conducted to ensure neither of these were blocking the camera’s view of the track. 

During testing of the LEGO figure pick-up routine, an initial approach was implemented in which the 

robot used a proportional-only control scheme to align itself with the target. This method employed a 

standard PID control structure with the integral and derivative gains set to zero. The goal was to allow the 

robot to adjust its heading and drive slowly into the optimal gripping position, using feedback from the 

Pixy camera to minimize horizontal offset between the LEGO figure and the camera’s centerline. 

 A primary source of this limitation was the large deadband inherent in the DC motors. The motors 

required a minimum PWM signal before any movement occurred, and this threshold was sufficiently high 

that low-speed, fine-grained adjustments were not possible. As a result, when the robot attempted to 

perform precise movements at close range to the LEGO figure, it often moved too abruptly. 

Because the robot stopped very close to the target before initiating alignment, the sudden movements 

caused by the deadband frequently led to overshooting. In some cases, the robot would collide with the 

LEGO figure, knocking it out of view of the camera. In other instances, the steering correction would 

overshoot the target alignment, causing the robot to lose visual contact with the figure altogether. These 

outcomes significantly reduced the reliability of the pick-up routine. 

To address this issue, a more controlled technique was developed. Instead of issuing continuous motor 

commands through the P controller, a pulsed control method was implemented. In this scheme, the motors 

were still driven based on proportional error, but rather than maintaining sustained motion, motor output 

was pulsed in short intervals. Specifically, the motors were commanded to spin for approximately 100 

milliseconds, followed by a 75-millisecond braking period. This pattern allowed the robot to “jitter” 

forward in small increments toward the LEGO figure. 

This intermittent motion preserved the basic structure of the P controller, allowing the robot to adjust its 

heading and position based on real-time visual feedback, but added a critical layer of control suited for 

fine movements at close range. The braking interval between pulses prevented the system from building 

up too much momentum, reducing the risk of overshooting or displacing the LEGO figure. As a result, 

this method provided a more precise and stable alignment routine, significantly improving the consistency 

of successful pick-up actions during testing. 

The gripper mechanism was also tested independently. Manual triggers were used to simulate pick-up and 

drop-off events, allowing verification of timing and position consistency. The gripper was tested using the 
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LEGO figure in different orientations such as sitting flat on its side, or face down, to ensure that gripping 

performance was not dependent on precise alignment. Since the robot occasionally knocked the LEGO 

figure over while attempting to align itself for the pick-up, it was crucial to have a gripper arm that could 

work with the LEGO figure in various orientations. Additionally, the 180-degree turning function was 

tested in isolation. The robot was placed on a track segment where it performed the turn, realigned with 

the path, and resumed tracking. Adjustments were made to motor speed and turn duration to improve 

repeatability and prevent over-rotation. 

3.3.4 Full System Test Plan 

Full system testing was conducted through repeated test runs on the obstacle course. The software system 

was deemed successful when it demonstrated stable and responsive line tracking, accurate LEGO pick-up 

only within the bullseye zone, reliable drop-off within the designated green area, and correct transitions 

between all operational states without freezing or erratic behavior. Each run was closely observed, and 

results were used to iteratively refine software logic and sensor tuning. This comprehensive testing 

strategy ensured that the final software and hardware implementation was both reliable and adaptable 

under competition conditions. 

3.4 As-Built Drawing of Final Design 

Below are two drawings of the overall final design. Figure 14 illustrates three views and an orthographic 

view of the assembly. 

 

Figure 14: Orthographic Drawing 

Figure 15 illustrates the exploded view of all components in the assembly. 
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Figure 15: Exploded View 

Finally, Figure 16 illustrates the overall dimensions of the robot. 

 

Figure 16: CAD 

3.5 Discussion on Design Calculations vs Actual Results 

3.5.1 Software Algorithm Design 

The initial software architecture of the robot was planned with a combination of flowchart diagrams and 

pseudocode. In parallel, a hardware architecture block diagram was developed to show the division of 

responsibilities between the Teensy 4.0 microcontroller (MCU) and the Pixy 2.1 module, which integrates 

a system-on-chip (SoC) and camera. This hardware architecture diagram also outlined the design 
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objectives corresponding to specific hardware functions and identified the communication protocols used 

for data exchange between the Teensy and the Pixy. Overall, the tasks split between the MCU and the 

SoC did not deviate from the original hardware architecture block diagram. The Teensy MCU executed 

the main software logic, including the proportional-derivative (PD) controller and motor control, while it 

queried the Pixy module for color block data. The Pixy handled object detection using its onboard hue-

based color filtering algorithm. 

While the general structure of the flow-chart diagram was followed in the final code, some details were 

finalized in the development process that were initially overlooked in the primary design calculations. 

Specifically, in the pseudo code, the main loop executed a long chain of if-else statements to switch the 

robot between its main states; line following, LEGO figure pickup and green box detection. To start, the 

main software program was written in one single Arduino program with this structure, which quickly 

became very lengthy and difficult to maintain and debug. As a solution for streamlining the code, the 

decision to switch to Platform IO was made. Platform IO allowed the code to follow object-oriented 

programming practices, which organized the code around main objects helping to organize the large code 

base and make the code more reusable and modular.  

In the codebase, an object was created for all the main components of the robot, such as the encoders, 

motors, turn controller and color detection. While this modular design improved clarity and separation, 

debugging, and updating the main control loop became increasingly difficult as additional robot functions 

were integrated. To address this, the control flow logic was refactored from a series of if-else statements 

into a switch statement structure, further improving readability, scalability, and maintainability within the 

Platform IO environment.  

In addition, a few more states were added to the state diagram that were not part of the original design. 

Initially, the design calculations included a single state for line following, intended to handle all scenarios 

in which the robot was tracking the red line. However, this was later expanded into three distinct line-

following states: one for navigating to the bullseye, one for travelling to the green box, and one for 

returning to the home position. This design choice was made specifically for the switch case approach, as 

it improved code clarity and made it easier to determine which segment of the course the robot was 

currently executing. This also helped clearly define the conditions required for the robot to switch from 

line following to another task, such as LEGO figure pick-up or drop-off.   

3.5.2 PID Controller Design 

The initial control strategy for the robot was based on using the Pixy’s vector tracking mode to extract a 

line vector from the red tape path. The PID control system was to calculate the steering error based on the 

horizontal deviation of the vector’s head (𝑥1) from the camera’s center (𝑥center = 39.5 pixels). However, 

during implementation, this method proved unreliable due to inconsistent vector detection at various 

lighting angles and partial occlusions during turns. As a result, vector tracking was abandoned in favour 

of colour block detection, which provided a more stable and consistent response from the Pixy. 

Instead of using the vector’s x-coordinate, the error was calculated as the distance between the center 

pixel of the detected red block and the frame’s horizontal midpoint. This change introduced several 

benefits such as reduced false detections and jitter in the error signal and faster response due to more 

consistent frame-by-frame data.  
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To further improve performance, a deadband threshold was implemented to ignore small, noisy 

deviations. This was implemented by setting the error to zero if the absolute value of the error was 

calculated to be below 10. This prevented the PID controller from making unnecessary corrections in 

cases where the block was nearly centered, thereby avoiding overcorrection and jitter at low error levels, 

which improved stability on straight sections of the course. 

Initially, the Ziegler-Nichols closed-loop tuning method was used, as outlined in the design calculations 

memo. Specifically, 𝐾𝑖 and 𝐾𝑑  were set to zero, then gradually increased the proportional gain, 𝐾𝑝, until 

the robot exhibited sustained oscillations. This was determined qualitatively through repeated test runs on 

the obstacle course. At this stage, the ultimate gain (𝐾𝑢) and the oscillation period (𝑇𝑢) were attempted to 

be measured in order to compute the full PID gains using the standard Ziegler-Nichols formulas. 

However, this part of the method was not successful in practice. The calculated gains led to unstable or 

sluggish behavior, likely due to external disturbances from surface inconsistencies, sensor noise from the 

Pixy, or unmodeled dynamics like motor lag and drivetrain asymmetry.  

Instead, 0.6𝐾𝑢 was used as the initial 𝐾𝑝 and a small 𝐾𝑑, then fine-tuned from there. The 𝐾𝑑 value was 

added to reduce overshoot and smooth the response during turns, but Ki was not used at all. Since line 

tracking did not suffer from consistent steady-state error, the integral term was deemed unnecessary. 

The final tuning process was entirely empirical, relying on iterative testing and visual performance 

assessments. Despite these deviations from the original tuning methodology, the controller ultimately 

provided reliable, responsive tracking that allowed the robot to complete the Game Day challenge 

effectively. 

3.5.3 Battery Calculations 

During the design phase, calculations were performed to select the optimal LiPo battery for the robot. Key 

factors considered included voltage compatibility, capacity, and discharge rate. Additionally, because 

there is a positive correlation between battery size and capacity, the goal was to select a battery that met 

the necessary specifications with the minimum capacity required. 

Initially, the calculations compared various battery capacities ranging from 500 mAh to 2000 mAh. The 

reason for considering these high capacities was the difficulty in finding batteries with a sufficiently high 

C-rating. Maximum current draw is influenced by both battery capacity and C-rating, so in order for the 

robot to draw the significant current expected, the battery needed either a higher capacity or a higher C-

rating (most batteries found did not exceed 4C). As higher capacities were initially easier to find, this 

option was initially prioritized. 

Based on these considerations, the calculations led to the selection of a 1000 mAh LiPo with a 2C rating. 

However, after further analysis, a 220 mAh 3.7 V battery with a 25C rating was found. Despite its lower 

capacity, the high C-rating of this battery allowed it to meet the required power output. When plugged 

into the original calculations, it was determined that this battery could still fulfill the requirements. 

The new batteries were purchased, and as predicted by the calculations, they were able to provide 

sufficient power for the robot to operate throughout the course. However, the battery ultimately fell short 

when powering the fan motor, which turned out to be significantly more inefficient than expected. This 

impacted on the ability to properly integrate the fan on test day, as there is a correlation between motor 
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speed and battery voltage. With the high current draw from the fan, the battery voltage dropped rapidly, 

reducing performance and preventing the robot from reaching high speeds. As a result, the fan could not 

be reliably used, and overall system performance was negatively affected. This highlighted the need to 

account not just for peak current requirements, but also for sustained power delivery and total energy 

capacity. In future iterations, selecting batteries with a higher overall capacity, even at the same C-rating, 

will be critical to ensure stable voltage rails and reliable integration of all components. 

3.5.4 Gripper Design 

Torque calculations were performed during the design phase to ensure the selected servo motor could 

securely grip and transport a LEGO figure without slipping. Using a conservative assumption for plastic-

to-plastic contact, 𝜇 = 0.3, and maximum arm length, 0.08m, the minimum required gripping torque was 

calculated to be 0.00785 Nm and gripping closing rate to be a maximum of 0.005 s/degree. 

The FEETECH 0403 micro servo was selected because it exceeded both the torque and speed 

requirements, 0.05886 Nm and 0.0015 s/degree respectively. These values are 7.5x larger and 3x faster 

than required, meaning there is a large factor of safety. Testing confirmed that the servo could reliably 

grip the LEGO figure under static conditions. However, during driving tests across the bumpy course, 

vibrations and inconsistencies in the course occasionally caused the LEGO figure to eject from the 

gripping mechanism. To improve stability, foam was added to the gripper surfaces to increase friction and 

reliability since the foam would wrap around the LEGO figure. 

Later in testing, the original servo failed. A replacement servo with similar specifications was found and 

installed. After replacing the servo, the gripping system worked reliably through multiple pickups and 

drop-offs, confirming that the design calculations met the project requirements. 

3.5.5 Driving Motor Calculations 

To properly select motors, calculations for the required torque and revolutions per minute were 

performed. To calculate the torque required, an acceleration of five meters per second squared was 

selected as a goal and used the equivalent inertia of our system to find the torque required. Then, it was 

determined that our max velocity would be 1 meter per second. After converting the linear velocity to 

angular velocity in revolutions per minute a motor that fits both of our requirements with a factor of 

safety of 30% was selected.  

4 Review and Reflection 

4.1 Challenges and Lessons Learned 

The development of the robot presented a variety of challenges across mechanical, electrical, and 

software domains. Many of these challenges provided valuable insight into system-level design and 

highlighted the importance of collaboration and iteration. This section outlines key lessons learned over 

the course of the project. 
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4.1.1 Lessons Learned from Design Process 

Several lessons were learned throughout various phases of the design process. One of the most critical 

lessons was the importance of iteration, not just within subsystems, but across them. The robot was 

composed of mechanical, electrical, and software subsystems, and a system-based design verification 

process was followed: mechanical systems were verified first, followed by electrical, and finally software. 

While this sequential approach made it easier to isolate issues within a specific domain, it ultimately 

slowed the identification of cross-system issues due to the interconnected nature of the platform. It 

became clear that iterating across subsystems, rather than within them in isolation, was more effective for 

diagnosing and resolving complex problems. 

For example, during the software integration phase, repeated efforts were made to tune the gripper’s 

actuation through software. However, progress was limited until the root of the issue was reconsidered 

from a mechanical perspective. After making slight adjustments to the gripper design, the functionality 

improved significantly. This reduced the total time spent debugging and highlighted the value of 

reallocating troubleshooting efforts across subsystems, rather than assuming a single domain was at fault. 

Another lesson learned was understanding when and where to over-design for robustness. A specific 

example of this occurred in the electrical subsystem. Through testing, it was found that the initial selected 

buck did not have a high enough max current rating based on experimental values. Although, 

theoretically, it should have been able to provide enough power, it was found that the buck could not 

supply enough power to the 5V rail. As a result, a different buck had to be chosen for the new PCB. This 

time, the selected buck was chosen to be more robust, ensuring it could handle the power requirements 

with plenty of margin for safety. Going forward, approaching design in this way will reduce the amount of 

redesign needed. Especially for critical parts of the system, such as power.   

Another critical lesson involved the risks of treating third-party APIs as “black boxes” without fully 

understanding their internal behaviour. Early in the software development process, the Pixy API was 

integrated without a clear understanding of the performance implications of its functions. Specifically, the 

getBlocks() function (used to retrieve color block data from the camera in Color Connected Components 

(CCC) mode) was assumed to be lightweight and non-blocking. As a result, it was called independently 

within multiple functions throughout the main loop. However, the function is actually a blocking call that 

retrieves only the most recent frame of vision data and overwrites the internal buffer each time it is 

executed. Because of this, multiple calls within the same loop iteration caused each subsystem to operate 

on a different frame of visual data, resulting in inconsistent perception and erratic behaviour. 

The unintended consequence of this design choice was a form of data desynchronization, where line-

following, bullseye detection, and drop-off zone detection logic were reacting to different views of the 

environment within a single control cycle. This mismatch introduced instability into the steering response, 

as corrections were often based on outdated or partial frame data. Compounding the issue was the 

cumulative delay introduced by calling the blocking function multiple times. While the delay of a single 

call was minor, calling it redundantly in the same loop significantly increased the loop’s execution time, 

reducing the frequency of control updates. This delay caused the robot to react sluggishly to dynamic 

changes in its environment, particularly at higher speeds, and contributed to a “chasing” effect where the 

robot continuously overcorrected its position in response to delayed or inconsistent error inputs, 

manifesting as oscillations during line following.   
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To resolve the issue, the software architecture was restructured to include only a single call to getBlocks() 

at the start of each loop iteration. The resulting data was stored and passed to all relevant functions as a 

parameter. This ensured that all subsystems operated on a consistent and synchronized frame of visual 

input while also minimizing unnecessary communication delays. Once implemented, this change 

eliminated the oscillation problem entirely and significantly improved system responsiveness and 

stability. This experience emphasized the importance of understanding the performance characteristics of 

external libraries, particularly in time-sensitive embedded systems. Going forward, greater care will be 

taken to analyze and document the behaviour of third-party functions before integrating them into critical 

control loops. 

Another valuable lesson was the importance of considering hardware-related causes for behaviors that 

initially appeared to be software issues. One such example occurred during testing, where the robot 

exhibited inconsistent line-tracking behaviour and unpredictable navigation patterns. At first, extensive 

time was spent debugging the software, particularly the PID controller and Pixy data-handling logic. 

However, after exhausting potential software-based explanations, it was discovered that the Pixy camera 

was had physically shifted in its mount, preventing it from detecting the line in the same manner that it 

had been tuned in. After testing the robot with reliable working versions of the code, and still observing 

abnormal line following behaviour, the root cause was identified through physical inspection of the 

robot’s setup. This experience reinforced the importance of not treating sensor inputs as infallible, and of 

validating hardware configuration before investing extensive effort into software-side debugging. From 

that point forward, more rigorous alignment checks, and calibration protocols were put in place and will 

be incorporated during the integration phase to catch such issues earlier in the process. 

4.1.2 Lessons Learned from Project Planning 

A number of important lessons emerged from the planning and coordination aspects of the project. While 

the milestone structure provided by the course was effective for guiding the overall timeline, it quickly 

became apparent that detailed daily or weekly planning was not always feasible. The unpredictable nature 

of hardware testing, the frequency of integration issues, and the tight coupling between subsystems often 

led to non-linear progress, making it difficult to adhere to rigid schedules. As a result, flexibility became 

an essential aspect of day-to-day planning, and the team adopted a more adaptive and iterative approach 

to time management. 

One of the clearest takeaways was that project planning always takes longer than expected. Whether 

tuning the line-following controller or verifying gripper design, tasks regularly required more time than 

initially budgeted. Problems also tended to emerge during the most time-sensitive phases, reinforcing the 

need to build in buffer time and avoid assuming anything would “just work” during final integration. 

Team dynamics also played a key role. Initially, responsibilities were divided between mechanical, 

electrical, and software roles, but this structure became inefficient during system integration. The team 

worked far more effectively when everyone collaborated in the same space, enabling real-time debugging 

and faster iteration. Each member contributed across disciplines wearing “every hat” as needed, which 

improved both efficiency and overall system understanding. 
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4.1.3 Lessons Learned from Game Day 

On game day, a significant learning experience for the team was determining how to race the robot in a 

way that maximized all elements of the performance index. This involved balancing consistency and 

speed. By starting with 2 conservative runs to secure a solid baseline score, followed by a final high-

speed run aimed at achieving the best possible time result the highest reliability factor and time was 

obtained.  

For the very first run of the robot, the motor speed during line-following was set to a base speed of 66 

PWM. The proportional (P) and derivative (D) control values had been extensively tuned and tested 

beforehand to ensure a smooth and reliable performance at this speed. This speed was also chosen for a 

safe first run because most of the testing had been conducted at this level, as it was the slowest PWM at 

which the motors could consistently operate without stalling.  

For the next run of the robot, the same speed was chosen to ensure that there were at least two successful 

completions. While the initial intention was to run the second attempt at a slightly faster speed, it had 

been observed that the slightly higher PWM value, 71, that had been extensively tested did not actually 

produce a faster result as the stopping was ability of the robot at the bullseye was less consistent and often 

forced the robot to take longer to secure the LEGO figure in the perfect gripping position. As predicted, 

the robot successfully completed this attempt, increasing the reliability score to 0.9 from 0.75, but took 

the exact same amount of time, 15 seconds, to complete the course. 

In the final run of the robot, a strategic decision was made to prioritize speed over reliability. This was 

based on the competition scoring criteria, where only the fastest of the three runs is used to calculate the 

performance index score, rather than an average. To ensure that the robot would still have the best chance 

of a successful attempt, as this was needed for the time to count towards the fastest time, additional test 

runs were performed using significantly higher base PWM values (90 – 125). By this stage, extensive 

testing had already been completed for the robot’s proportional and derivative (P and D) control 

coefficients, making the process of adjusting and fine-tuning these values through trial and error relatively 

straightforward.  

After a few more tests, the optimal base PWM value for line-following towards the bullseye was updated 

to 95. To accommodate the increased speed and reduce risk of slippage, slight modifications were made 

to the bullseye stopping criteria. Once the robot had successfully picked up the LEGO man, and began its 

traversal toward the green box, the base PWM was reduced back to 66. These adjustments were made to 

improve accuracy during approach of object detection, ensuring that the robot could reliably locate both 

the green box and the bullseye. Despite the modifications made to ensure secure retrieval and drop-off of 

the LEGO man, the total time to complete the course on the third attempt was still reduced to just 13 

seconds. This demonstrated that the adjustments for accuracy did not compromise the increase in speed 

and instead contributed to a successful final run.  

Overall, some key takeaways from Game Day included learning to trust personal intuition when tuning 

proportional and derivative coefficients on the spot, as well as developing the ability to quickly iterate and 

apply insights gained from test runs to improve performance in real time. 
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4.2 Recommendations 

The next steps for the mechanical team would be to further develop and optimize our systems. First, there 

would be mass reductions through using a smaller servo motor, as the servo motor used provided too 

much torque, and was unnecessarily large. Next, the 3D prints would be optimized to further reduce mass 

by cutting away any material that is not integral to the robot’s operation.  

Next, the fan assembly would be further developed to increase our speed around corners. The fan 

assembly did not work as intended on the final design, so the next step would be to find the source of the 

issue and create an iteration that solves it. This would improve our time as the added downforce would 

allow the robot to reach a higher top speed. 

The next step for software would be to swap the camera for a lighter camera, reducing the mass, and then 

writing a new line detecting software that is more reliable than the Pixy API software. This would allow 

the robot to be adapted to different situations and allow for more customization of the program. 

Finally, all Dupont style connectors would be replaced by a more permanent solution like solder or glue. 

These connectors are unreliable as they often slip off pins, severing important connections. A more secure 

solution will increase the reliability of the robot since the wires would no longer slip out. 

4.3 Conclusions 

This term, the team was challenged by the MTE380 teaching staff to design and build an autonomous 

line-following robot. Key design constraints included minimizing weight and cost, ensuring ease of 

integration, managing design complexity, and maximizing reliability. 

Over the course of the term, the team developed multiple prototypes and continually iterated on the 

design as challenges emerged and improvements were identified. Notable issues included insufficient 

power delivery on the 5V rail of the PCB, a gripper design that struggled with consistent pickup and drop-

off, and unexpected software behavior from various third-party APIs. Addressing these challenges 

required a mix of strategies, including a full redesign of the PCB, close cross-functional collaboration on 

the gripper mechanism, and a deep dive into the open-source software to better understand and debug its 

behavior. 

Despite these hurdles, the project was a success. On competition day, the robot placed first in both time 

and weight categories, achieving a fastest run of 13 seconds, a weight of 131 grams, and a perfect 

reliability score. 

This experience offered valuable lessons in iterative design, system integration, and team-based problem 

solving. The team looks forward to applying these skills in the upcoming MTE481/482 capstone projects. 
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MTE 481/482 Proposal 

1 Needs Analysis and Problem Statement 
With the rapid advancement of battery technology, adoption across multiple sectors including electric 

vehicles (EVs), grid energy storage, and home battery backup systems are just a few.  

With the rise in high energy batteries, this has led to an increase in fire related incidents involving these 

systems. Fires caused by battery failures are self-sustaining, extremely toxic, and difficult to extinguish 

using traditional methods. 

Fire fighters responding to EV and battery fires face a few critical challenges: 

1. Limited visibility into thermal runaway hotspots within the battery packs. 

2. Unpredictable fire behaviour leading to increased risk of explosion and re-ignition.  

3. Inefficient suppression tactics that waste resources, like water, and time (initial studies say 10-60x 

more water as an internal combustion engine vehicle). 

Therefore, there is a need for an autonomous device that maps thermal and gas hotspots and strategically 

targets suppression efforts to improve firefighter safety and effectiveness. 

1.1 Needs Analysis  

By designing and building a low-profile autonomous robot capable of mapping heat and gas distributions 

across EV battery packs, this project aims to contribute to the development of a reliable, low cost, and 

field deployable technology that will improve modern firefighting operations. 

This robot will allow firefighters to: 

1. Rapidly locate critical hotspots. 

2. Visualize dangerous conditions beneath burning vehicles. 

3. Target cooling efforts precisely, improving fire suppression and reducing risk. 

1.2 Problem Definition  

Design an autonomous mobile robot capable of mapping thermal and gas concentrations under electric 

vehicle battery packs during fire emergencies. The robot must navigate under damaged vehicles, general 

live data maps, and optionally deploy water to the most critical hot spot areas.  

1.3 Objectives/Constraints/Criteria 

Objective Success Criteria 

Map thermal hotspots Accurately identify areas above 80 (C) under EV body 

Detect hazardous gases Detect battery pack off gas concentrations 

Autonomous navigation Robot maps 90% of EV underside within 30 seconds 

Portable deployment Robot deployment in under 30 seconds  

Manual control override Operator can manually operate robot if autonomy fails 
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Constraints Description 

Size Must not exceed 20cm in height and 60cm in length and width 

Weight Less than 30 lbs 

Temp Resistance 10 min exposure to 1000 (C) 

Cost Less than $2000 

Battery life Minimum 30 min under full load 

 

Criteria Description 

Thermal mapping accuracy Compare designs based on resolution and accuracy of hot spot 

detection 

Gas detection sensitivity  Compare designs based on minimum gas concentration reliably 

detected 

Traversal reliability Compare designs based on how reliability each design covers the 

underside of the EV without manual intervention 

Deployment speed Time to fully deploy and activate the robot at scene 

Weight Lighter designs are preferred 

Cost Lower cost designs are preferred  

Durability Robot survival under high temperature environments 

1.4 Overview 

Hot Spot Robotics will aim to develop a small, rugged, autonomous mobile robotic system that improves 

firefighter response to battery fires by mapping and locating critical hot spots which will help firefighters 

act smarter, faster, and safer. 

 


